

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ

Β' ΛΥΚΕΙΟΥ

Instructions:

- 1. Solve all the problems. Every problem has 10 points.
- 2. Write with blue or black ink (you can use pencil for the figures)
- 3. Use of correction fluid is not allowed.
- 4. Use of calculators is not allowed.

Problem 1: (a) Find the value of the parameter $\theta \in (0, \pi)$ for which the function f with $f(x) = \cos^2 x + \cos^2(x + \theta) - \cos x \cdot \cos(x + \theta)$, $x \in \mathbb{R}$ is a constant function.

(b) Find the value of f.

<u>Problem 2</u>: Given an angle $\angle xOy$ and let Oz be its bisector. We take a segment OA on Ox with $(OA) = \alpha$, a segment OB on Oz with $(OB) = \frac{4\alpha}{3}$ and a segment $O\Gamma$ on Oy with $(O\Gamma) = \frac{16\alpha}{9}$. If I is the midpoint of the segment OB and I is the midpoint of the segment I is the midpoint I is the midpoint of the segment I is the midpoint of the segment I is the midpoint of the segment I is the midpoint I is the midpoint

Problem 3: We consider a rectangle $AB\Gamma\Delta$ with dimensions α , β and $\alpha \neq \beta$. We draw two parallel lines (ε_1) , (ε_2) through A, Γ , which have no other common point with the rectangle. We also draw two more lines (ε_3) , (ε_4) through the points B, Δ that are perpendicular to (ε_1) , (ε_2) . The lines (ε_1) , (ε_2) , (ε_3) , (ε_4) create a new rectangle $K\Lambda MN$, and let E be its area. Find the maximum value E_{max} of E.

<u>Problem 4</u>: Given the set $A = \{2006 + |6^{2\mu} - 5^{\nu}|, with \mu, \nu \in \{1, 2, 3, ...\}\}$. Find the minimal element of the set A.